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AN ASYMPTOTIC INVESTIGATION OF THE
SMALL STRAIN THEORY OF SHELLS

D. R. WESTBROOK

University of Calgary, Alberta, Canada

AbItract-A small strain theory of shells is derived from the three dimensional equations of equilibrium and
compatibility by the usual asymptotic approach. The highest order equations are seen to agree with those of
Koiter [9] and lohn [12].

In the derivation of these equations three small parameters appear and different special theories are obtained
when difi'erent assumptions on the relative magnitudes of the parameters are made.

In cases where either the extensional stresses or the bending stresses are dominant, special refined theories are
required. These are obtained in the linear case and are found to agree with John's refined interior equations
[13, 14].

1. INTRODUCTION

THE asymptotic approach to the linear theory ofshells is now wen established (e.g. Friedrichs
and Dressler [1], Green [2, 3], Goldenweizer [4]) and some specific problems have been
treated (e.g. Riess [5], Westbrook [6, 7]).

The asymptotic methods have also been applied to the non-linear theory of plates by
Ebcioglu and Habip [8J but does not seem to have been applied to shells.

In this paper we carry out this work to obtain shell equations which are valid in the
interior of the shell, that is away from the edges.

The boundary layer or edge effects we postpone for a later study.
The work here is carried out under the assumption ofsmall strains. Following Koiter [9]

and Chien [10] we do not introduce the displacements but make use of the compatibility
equations instead. This has the advantage that no additional assumptions on the magnitudes
of the displacement gradients are required but suffers the disadvantages that it does not
allow an easy formulation of displacement boundary conditions and that it necessitates the
use of the Cauchy stress tensor which does not in general lend itselfeasily to the formulation
of boundary conditions of traction (see Truesdell and Noll [11, p. 125J). For the present
purposes, however, it is assumed that we are dealing with traction boundary conditions
which may be expressed in terms of the Cauchy stress tensor.

Comparisons of the equations are made with Koiter [9], who assumes a state ofapproxi­
mately plane stress, and with the rigorous results of John [12J. Agreement is obtained when
we make certain assumptions on the loading. These assumptions are very natural and would
be satisfied under almost any loadings of engineering interest.

The appeal of the asymptotic approach is that the assumptions seem natural and that
the development is then consistent.

It will be assumed throughout that the material is isotropic and homogeneous. The usual
linear stress strain relations are used with an error which is of the order of the square of the
strains. Since these second order terms are not considered explicitly the resulting theory
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contains only the leading terms in the asymptotic expansions. It should, however, be clear
from the present work, how to obtain higher order approximations if they are required.

We consider a thin shell of undeformed normal thickness 2h. Here we consider h as
constant but this is not essential to the method and a variation in h can be taken into account
provided that partial derivatives of h do not become large compared to h itself. The shell
coordinates and the curvature tensor of the undeformed middle surface are scaled together
with the strains and it is found that the differential equations of the elastic theory contain
three parameters all of which are assumed to be small; e, a measure of the magnitudes of
the strain, () = hIR, where R is related to the curvature tensor and b = hIL, where L is a
typical length related to the dimensions of the shell and the wavelength of the boundary
data.

The final equations given here contain various ratios of these small parameters with the
neglected terms always smaller than some term remaining in the equations. Different
special sets of shell equations are obtained when different assumptions are made on the
relative magnitudes of the small parameters.

Since this work was completed, two papers by Koiter [15, 16] have appeared which show
that in the linear case, the root mean square error in the energy between the classical shell
solution and the solution of the three dimensional problem is of the order () +b2

• It seems
probable that a similar error estimate would be found in the present case for the linear
problem if equations (4.6) and (4.7) are used.

2. DESCRIPTION OF THE SHELL, THE STRAINS AND THE EQUATIONS OF
COMPATIBILITY

In the undeformed state the shell has two curved surfaces or faces :Ell and :E-1I and a
lateral surface or edge B. The faces are at a constant distance h from a middle surface :Eo,
one face on each side of :Eo. The particles are assigned Lagrangian coordinates u1, u2, u3

where u1, u2 are coordinates on the undeformed middle surface :Eo and points on a normal
to :Eo have the same u1

, u2 coordinates. u3 is the distance from :Eo measured along a normal
to :Eo. The faces :Ell and :E- 1I of the shell are then given by u3 = h, u3 = -h respectively.
Since we are going to give special attention to the coordinate u3 we will use Greek letters
for indices having only the values 1, 2 and Latin letters for those having values 1, 2, 3.
The notation j'i for the partial derivative of j with respect to ui will be used. We suppose
that in the undeformed state the particles have cartesian coordinates Xi = X i

(U
1

, u2
, u3)

and that in the deformed state they have cartesian coordinates Xi = X
i
(U

1
, u2

, u3
). The

fundamental tensors in the undeformed and deformed states are represented by Gij and gij

respectively, so that

(2.1)

(2.2)

We give preference to the undeformed metric and all raising and lowering of suffices and
covariant differentiation will refer to this metric.

The strains 8ij are defined by

8ij = 1(gij-Gij)'

With the given choice of coordinates we note that

G~p =A~p-2U3B~p+(U3)2B~Byp}

G~3 = 0, G33 = 1,
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where A~p, B~ are the coefficients of the first and se~--tt fundamental forms of the un­
deformed mid-surface :Eo.

In order to form covariant derivatives with respect to the deformed metric, we note that
the Christoffel symbols {];;} of the deformed metric are such that

{};:} = {M +C}k (2.3)

where U} are the corresponding Christoffel symbols in the undeformed metric and

C~k = glr(er j;k + ekr;j - ekj;r)

where gir is such that glrgrj = <5~ and ";" denotes covariant differentiation with respect to
the undeformed metric.

The equations of compatibility which express the fact that the Riemman Christoffel
curvature tensor for both the undeformed and the deformed metrics must be zero are found
to be

Ghk;lj + Glj;hk - Ghj;lk - Glk;hj + (G"b + 2e"b)(qkqj - C:jqk) = O.

Of these equations only six are independent.

3. THE STRESSES AND THE EQUATIONS OF EQUILIBRIUM

(2.4)

We use the Cauchy stress tensor whose components, referred to the ul system, are denoted
by tlj• This means that if dA is an element of area of the deformed body with direction
cosines "I referred to the deformed cartesian Xl system then the resultant force on dA referred
to the Xl system is

The equation of equilibrium may be written

(3.1)

(3.2)

The body force has been omitted for convenience. No difficulties arise from its inclusion.
For an isotropic homogeneous material we will have the constitutive equation:

tlj = 2Jl [Gij + 1~VGlj~] +O(e2),

where O(e2
) denotes terms whose magnitude is of the order of the square of the strains and

where Jl is the elastic shear modulus and v a modified Poisson's ratio given in terms of the
Poisson's ratio u by the equation (l +v)(l-u) = 1.

It should be noted here that tlj is a tensor in the deformed coordinates and hence raising
and lowering of the suffices is performed by means of the glj'

The strain tensor elj however is taken to be a tensor in the undeformed coordinates
and raising and lowering of suffices is performed by means of Glj • The error involved in
raising the suffices in stress strain relation (3.2) is of the order of G

2 and hence may be
absorbed in the higher order terms of the stress strain relations.

We assume boundary conditions tl3 = {Jl/2)[QI±p'] on the surfaces u3 = ±h of the
deformed body.
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4. THE SHELL EQUATIONS

We now scale the coordinates and the second fundamental tensor of :Eo in the following
manner. Let e~= u~/L where L is a typical length whose maximum value is determined by
the boundary data and the shell geometry and let ( = u3/h. In scaling the second funda­
mental tensor we follow John [12]. Let Po 'be a point of :Eo and let the Cartesian coordinate
system Xi be chosen so that Po is the origin and the X 3 axis is normal to :Eo at Po. In the
neighbourhood of po. :Eo is given by an equation X 3 = f(X t , X 2) where f and its first
partial derivatives vanish at the origin. We define the length R such that

If,~pl < R - t, If,~pyl < R - 2, etc.

for any choice Po of :Eo. It may then be shown, John [12], that B~ is of order R- 1 and also
that A~p,y is of order R - I.

We now define two small parameters () = h/R, (j = h/L and a scaled curvature tensor

K~p = RB~p.

From this point f,~ will denote the partial derivative offwith respect to e~ and f" the partial
derivative with respect to (.

We note here the leading terms of the Christoffel symbols of the undeformed metric.

{py} = ±[~rpy+0(()2/(j)J

where

rpy = tRA~cJ(ApcJ,y + AycJ,p - Apy,cJ)

is a scaled Christoffel symbol formed in the undeformed surface metric A~p of :Eo.

{;p} = ~[K~p+O(())]

Up} = -~[Kp+O(())]

Uk} = U3} =0.

(4.1)

(4.1)

The raising and lowering of the indices iX, phere is by use of the surface metric A~p.

The equations are scaled under the usual assumptions of the asymptotic method; that
the order of magnitude of any terms is not increased when they are differentiated with
respect to e~ or (, or

Ihj.~p...t1,...dhjl
remains bounded as h tends to zero and where hj denotes any stress or strain component.

We now follow John [12] and define the small parameter y = max[(j, ()t, st]. There are
however occasions when it becomes convenient to indicate some errors in terms of(j as well
as y. Writing tij = j.lSii we obtain from the equations of equilibrium (3.1)

s:t = O(e(j or 8y2)

33 0( 2)S" = ey .
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(4.3)

(4.2)

(4.5a)

(4.5b)

Making use of the boundary conditions (3.3) we see that

S,,3 = tQ"+ O(eb or ey2), S33 = tQ3+O(ey2)

pa. = O(et5 or ey2), p3 = O(ey2).

The condition on pi is one of the criteria which must be satisfied in order that a small strain
theory is applicable. In almost all surface loadings of engineering interest, pi and Qi are of
the same order of magnitude. From this point we will assume that this is so and hence we
have

S,,3 = O(eb or ey2), tQ" and tpa. are O(eb or ey2)

S33 = O(ey2) Q3 and p3 are 0(ey2).

It is worthwhile perhaps to point out that this assumption that Qi is of the same order of
magnitude as pi is not necessary and the theory may be worked out without it. The resulting
equations will differ from those of authors who use other approaches indicating that those
theories are probably incorrect if such an admittedly unlikely loading occurred.

The equations (4.2) are in a sense equivalent to Koiter's assumption of approximately
plane stress although we shall see that some slightly different results will emerge later.

In the case of an isotropic and homogenous material we have

e"3 = O(et5 or ey2)

e33 = e~ = -ve~+O(ey2).

We make use of these results in three of the equations of compatibility (2.4) with h = ex,
i = 3, j = p, k = 3. In the scaled coordinates we obtain

e"p." = O(ey2)
or

e"p = E"p+'~p+O(ey2). (4.4)

The tensors R"p and Wa.fJ will be treated as surface tensors so that raising of suffices will be
performed by the use ofthe surface metric A"P. Suffices on the e"p tensor however are raised
by use of the metric G"p.

Making use ofthe results (4.3) and (4.4) we now calculate the tensors ejA;' We find that

hqy = O(Bt5 orey2), hCjp = Wp+0(8)'2)

hCj3 = O(Bt5 orey2), hqy = - "'/Iy+O(ey2)

hq3 = O(et5or8)'2), he~3 = -vW~+O(ey2).

We substitute these in (3.1) and make use of (4.1) to obtain the following equilibrium
equations

1,'t + t5s"Plp = O(ey3t5 orey4)

S33 + t5s3PI + OK sPy - Jv. sPy = 0("",4)
~ P h h -,

Here "I" denotes scaled covariant differentiation with respect to the surface metric, s"p
being treated as a second order surface tensor and S"3 as a surface vector, in fact
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Using the constitutive equation (3.2) and (4.4) we have

sl1.P = NI1.P+ (MI1.P +O(ey2)

where

(4.6)

NI1.P = 2[EI1.P + vE~AI1.P]

MI1.P = 2[WI1.P+vW~AI1.P].

NI1.P, MI1.P are thus surface tensors. Substituting (4.6) into (4.5a), integrating with respect to (
and using the boundary condition (3.3) we find

(4.7a)

(4.7b)

and

oNI1.Pl p+tPI1. = O(ey20 or ey4). (4.8a)

We now use this new expression for ~3 in (4.5b) integrate with respect to ( and use the
boundary condition (3.3) to obtain,

S33 = tQ3+t(P3+~(1_(2)prly+!(1_(2)KpyMPY

- t(1- (2)W/JyMPY - ~((1- (2)MI1.Pll1.p +O(ey4)

and

(4.8b)

The other equations for our theory are obtained from the remaining three compatibility
equations. These equations will now be polynomials in ,. It is found however that when the
constant terms are equated to zero for all three equations then the other terms become
identities. This may be expected because of certain identities obtained by differentiation
and combination of the compatibility equations. The constant terms are in fact just those
which would be obtained from the Gauss Codazzi equations of the deformed surface. They
are

02[E12112 + E21121 - £11122 -E22111 ]

+O[K11W22+K22W11-2K12W12]-[W11W22- Wf2] = O(ey4)

0(W1212 - W2211 ) = O(ey20)

0(W2111 - W1112) = O(ey20)

They may be written as

el1.Pe<r<[«52EI1.<!17P - K<r<~P+tW<r<~p] = 0(8)14)

and

OWply-«5W~IP= O(ey2«5)

where el1.Pis the surface permutation tensor.

(4.9a)

(4.9b)

(4.9c)

(4. lOa)

(4.l0b)
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(5.la)

(5.lb)

Ifwe note that the J¥,./l used here is not the change in curvature used by Koiter and John,
but that in fact the deformed curvature tensor b~/l is given by

b~/l = [(g33)-t{~~}]U3=O

J¥,./l I 2
= B~/l-h+h0(8Y ).

It is then seen that our equations (4.8a), (4.8b), (4.9a), (4.9b), (4.9c) are in agreement with
John's lowest order interior equations when the surface loads are zero.

There is a slight difference between our equations and Koiter's simplified equation
when surface loading is taken into account. It is the appearance of the term bQ~I~ in our
equation (4.8b). The Q~ term cannot appear in Koiter's theory because he only considers the
resultant shear on the middle surface. The term is always of order 8152 or less and will be
negligible in many engineering loadings.

As Koiter [9] points out the shell equation (4.8), (4.9) are valid under a wide range of
loadings. Specifically, they are valid provided that both

W » 8y2 and E » 8y2

where one of E or W must be of order 8.

In the remaining two cases W ~ 8y2 or E ~ 8y2 we will need to make refinements to our
equations.

5. REFINED THEORIES

In obtaining refined equations we consider only theories which are essentially linear,
that is we take 8 ~ y4. This is done because otherwise we require to know the 0(82) terms in
the stress-strain relations and to take into account difficulties in raising and lowering
suffices in the deformed as well as the undeformed metric. Such refined equations could be
obtained but it is felt that the effort involved is too great for the results particularly in view
of the fact that non-linear constitutive equations have not been developed to any great
extent.

Case I
We assume a linear theory 8 ~ y4 and W ~ 8y2.
The equations (4.8a), (4.8b) do not need refinement and remain as

bN~/lI/l+!P" = 0(8y28 or 8y4)

OK N~/l +.lp3 +.lbQ~1 = 0(8y4)
~/l 2 2 ~ •

To obtain further refinement ofthe compatibility equations we first return to the equations
for which h = lX, k = 3, i = 3, j = p and use the new approximations (4.7a), (4.7b) for S~3

and S33. We find that after integration

8~/l = E~/l +bJ¥,./l +!b'[Q~I/l+ Q/lI~] +~2[P~I/l+ P/lI~] -to,2[K:l'Y,,/l+Kpl'Y,,~]

+!VO,2K~/lW: +!v'282
E:I~/l +tv,3b2W:I~/l

-tb2,3[M:10'/l+MpI0'~]+0(8Y4). (5.2)
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We use (5.1) together with (4.7a), (4.7b) to obtain the refined compatibility equations

e"/leat[02E"tla/l- OK"t J¥.,./I_!02(l- 2v)K"tKa/l~] = O(ey6). (5.3a)

If we note that when W = O(ey2) then

h(b"/I-B"/I) = - ~/I+vOK"/lE:+O(ey4). (5.4)

we see that this agrees with Koiter's exact equation. The other two compatibility equations
become

0(W1212 - W2211)+Oo[K1Et212 - K2Elt12] +OoK~[E1212 -E2211 ]

+VOO[K22~ll -K12~12] = O(ey40) (5.3b)

0(W2111 - Wl1I2)+Oo[K2Et1I1-K1Et2Itl+OoK~[E2111 -E1112]

+VOO[K11E~12 -K12E~ll] = O(ey40) (5.3c)

which are also in agreement with Koiter's exact equations when (5.4) is taken into account.
The equations (5.1) and (5.2) are the membrane shell equations. Equations (5.3a, b, c)

are then equations for W.
As was noted by Koiter [9], if () ::; 02 then the first term in (5.3a) becomes dominant

and the system appears to be overdetermined suggesting that such an occurrence is unlikely.
However if () is of O(y4) the equation (5.1b) is no longer valid and a consistent theory is
possible. In fact we find that the equations become

02 e"/I eatE = O(ey6)lXtla/l

a generalized plane stress problem.
This is in agreement with an earlier result of Koiter [17] in the linear theory of shells.

Case 2
e ::; y4, E ::; ey2.

In this case the compatibility equations require little refinement and we obtain

(}[K~W:-K:W~] = O(ey4)

OWply-OW~I/I = O(ey2o).

(5.4a)

(5.4b)

(5.5)

To refine the equilibrium equations, we first make use of the improved approximation (5.2)
for e"/I and we obtain

~ = N,,+rM"+(}t'2[3K"Wt _Kt W"] + v(}t'2K" wa
/I /I" /I .. t fl /I t .. /I a

+!l5C2[P"I/I+P/lI"] +OP[!VQ3 +ivO(1 +3(2)pY
ly

+v(}(1 +(2)K:W~ +v2(}K~W:]

The equilibrium equation (2.1) gives

O~I/I+s~.,- (}K:[!Q"+!CP,, +0(I-C2)(1 + v)W;I,,] -(}C20K:ltM~+(}C20Kpl"M~ = O(ey40).
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This is integrated with respect to C, and use is made of the boundary condition and the
equations (5.4a~ (5.4b) to obtain the following refined equation

(jNpl,,+t(M[K~Wp+KpW~+ vKp~+(jpv(4+ 3v)K:~]I"

-~1 +v)O(jK:~IP-t(1(jKp~I,,+~(jK~W~IP

+tP"'+tv(jQ3Ip -toK:Qp +M2(1 + 3v)P"I"p

+!(j2Ppl~ = O(ey4(j). (5.6a)

This equation is seen to be in agreement with John's [13, 14] corrected refined equation
when note is taken ofthe compatibility equation (5.4a). In the second equation ofequilibrium,
we find that the equilibrium equation becomes

3 11 1 0 r2 "p I p(js" I,,-OK: "2Q3+"2CP3+"2(I- .. )K"pM +OK"ps"

-02,2K~K~Mp+S.3? = O(el).

When this is integrated and use is made of the boundary conditions and the compatibility
equations (4.4a), (4.4b) we obtain the following refined equation

t(j2M/7tI"1 + OK~N~+tp3-t(1- V)OK:Q3 +!(jQ"I"

+t0213vK~K~W:+1KpK~W~-v(2-3v)K~K~W:-(2-4v)K:K"1= O(ey6) (5.6b)

This equation is also in complete agreement with John's [13] refined equation.
It is not immediately clear that Koiter's equations [9] agree with John's refined equations

[13, 14] since great care must be taken in identifying the various terms appearing in the
respective sets of equations. It was in Koiter's paper [18] that the comparison of these
equations in certain special cases indicated clerical errors in John's original derivation [13]
which were subsequently corrected [14]. More recent work by Koiter has established the
equivalence of his equations and John's in the general case.

6. FURTHER SIMPLIFICATIONS

It is possible to make further simplifications for particular situations in which the
magnitudes of the three parameters (j, 0, e may be compared. It should be noted that 0
depends only on the geometry of the plate. The typical length L and hence (j will depend on
the smaller of a distance to the edge and the typical wavelength of the loading functions.
There is little loss in assuming that (j ~ O. The parameter e will depend on the external
loading. We see that the normal stress resultants will be of order Eh +hey2, the shear
resultants of order WM+hey2(jand the bending moments of order h2W+h2ey2. We also
recall that Q3 and p3 are of order ey2, P"', Q" of order e(j. Having determined (j it should be
possible to choose e and also make a comparison between E and W.

We now consider the consequences of various inequalities between the three small
parameters e, 0, (j.

We note first that if e = 0 = (j2 then no further simplification of the equations (4.8),
(4.10) is possible. The cases E = ey2 or W = ey2 are not considered here because of the need
for higher order terms in the constitutive equations.
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Linear theories
If 6 « y2 we obtain linear theories. We take 6 = y4 and we obtain the equations

bNIZ/lI/l+!P" = 0(6y2b)

tb2MIZ/lIIZ/l+OKIZ/lNIZ/l+!p3+!bQIZIIZ = 0(6y4)

elZ/l e""[b2ElZtlcr/l-OK/ZtWcr/l] = 0(6y4)

bW~I/l- bWp1y = 0(6y2b).

These equations are the relevant equations if 0 = 15 2
• Further simplifications are possible

when 0 «152 or 0 » 15 2
• If 0 = y4, then the equations become

bNIZ/lI/l+!P" = 0(6y2b)

tb2MIZ/lI IZ/l+!p3+!bQIZIIZ = 0(6y4)

elZ/l e""b2ElZt Icr/l = 0(614
)

bW~I/l-bWpIY = 0(6y2b)

which are the linear plate equations.
If 0 = 15 » 152 then we have y2 = 0 = 15 and

y2NIZ/lI/l+!P" = 0(614
)

y2K IZ/lNIZ/l+!p3 = 0(6y4)

y2 elZ/l ecrtK/Zt~/l = 0(6y4)

y2Wply-y2W~I/l = 0(6y4).

The system is uncoupled, the first two equations being the equations of a linear membrane
theory.

In the cases when W = 612 or E = 612 we must use the refined equations (5.1), (5.3) and
(5.4), (5.6). When W = 6y2, 0 ~ 152we need the full refined equations (5.1), (5.3) ifO = y4 « 152

we obtain the equations of generalized plane stress

y2 elZ/l ecrtE/Ztlcr/l = 0(6y6)

bNIZ/lI/l+!p" = 0(61215).

WhenE = 6l,0 ~ 152we need the full refined equations(5.4),(5.6). If0 = y4« 152we obtain
the plate bending equations

tb2M""I"" +!p3 +tbQIZIIZ = 0(616
)

bWply-bW~I/l = 0(61215).

The linear theories are dealt with in the paper of Green [2].

Nonlinear theories
When 8 = y2 we obtain nonlinear theories. As we have already noted when 8 = 0 = 152

we need the full equations (4.8), (4.10).
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When 6 = 152 = y2 and e~ y4 we obtain

t5N"Plp+!P" = O(By2t5)

tt52M"PI"p+!P3+tt5Q"I,,- w..pN"P = O(By4)

e"P ell't[t52E"tlaP+tw..tl¥..p] = O(ey4)

t5Wp1y -t5W;IP = O(By2t5)

which are the von Karman plate equations.
When 6 = e= 15 » 152 we have

911

y2N"Pl p+tP" = O(By4)

Y2K NPY - J.v. NPY +1.p3 = O(By4)PY PY 2

e"P ell't[-y2KQltWap +tw..tl¥..p] = O(By4)

y2[WPIY _ W;IP] = O(By4).

The last two equations determine Wand the first two are of a nonlinear membrane type.
We examine finally the case B» e, B» 15 2• The equations are not altered until e~ y4,

15 ~ y2 when we get

t5N"Plp+tP" = O(ey2t5)

w..pN"P-tP3 = O(By4)

W:W~ - W~W: = O(By4)

t5(Wply - W;IP) = 0(6y2t5).

It should be recalled that 15 depends on the distance to the boundary and therefore in any
theory for which we have taken 15 « y the equations will not be valid for distances less than
h/y from the edge. To obtain solutions for the whole region one must take 15 = y. Thus only
the equations for which y= 15 or e= 15 2

, B = 152 or e« 152 and B « 152 are relevant for
boundary value problems. The equations must of course be combined with suitable
boundary conditions which may be complicated by nonlinear effects. To obtain the correct
boundary conditions for this interior problem we would have to consider a boundary layer
theory. This we postpone for further study but we believe that the boundary conditions
would be similar to those of the linear theory.
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A6CTpaKT-IIYTeM 06WKHOBeHHOrO aCHMnTOTH'Iecxoro nO,llXOAa onpeAeJlJICTCJI TeopHJI MllJIWX Ae4>oP­
MllllJdl: ,l{JUI 06ono'lex, HCXOAJI H3 TpeXMepHLIX ypaBHeHHA: PllBHOBecHJI H COBMec1'HOCTH. YpllBHeHHJI
HaA60nee BWCO xoro nOpJIAKa cornacoBWBYJQTCJI CTaKHMH lKe ypllBHeHHJIMH Kompa [9] H,l{3:oHa [12].

IIpH BLIBOAe 3THX ypaBHeHHll: nOIlBnTIOTCIi TpH Manwx DapaMeTPa HnOJIY'laIOTCIi pa3Hwe cneIUlllJll»HWe
TeopHH, npH pa3HWX npeADOnOlKeHHJIX OTHOCHTen&HO BCJIH'IHH napaMCTpoB.

AnJI cny'l8eB, KorAa Kax HanplllKeHHII paCnIHpeHMJI, Tax H uanplllKeHHJI H3m6c11 OXa3WBaIOTCIi npeo6­
naAalOlUHMH, HaAO npHMeHHT& cneIUlan&Hoe yTo'IHeHHe TeopHH. OHM nOny'laIOTCIi Ma JIHHell:Horo CJIY'lali
HcornacoBLIBYIOTCIi CyTo'lHeHHLIMH ypaBHeHHIIMH ,l{3:oHa Mil BHYTPCHHOll: 06naCTH [13, 14].


